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Abstract—The Monte Carlo method was used to model the collisional energy transfer for polyatomic mole-
cules within the framework of the statistical theory of reactions. A model describing energy transfer through
the formation of a statistical collisional complex was suggested. It was assumed that the total energy of the com-
plex was randomized in the course of collisions and statistically distributed among the internal and translational
degrees of freedom. The method was verified by comparing the equilibrium distribution functions for the vibra-
tional, rotational, and total energies of the molecule. The mean energy portion and the root-mean-square energy
portion transferred per collision, as functions of the total molecular energy, were determined. The relaxation
parameters of the population distribution over energy after a sharp increase in the bath-gas temperature were

calculated.

INTRODUCTION

The Monte Carlo method is widely used in statisti-
cal physics [1]. The history of its applications in chem-
ical kinetics is much shorter (see, e.g., [2-10]). We con-
sider only relaxation and reactions of highly excited
states (HESs) of polyatomic molecules and emphasize
that the main problem along this line is in solving
microkinetic equations with the aim of calculating the
population distribution of HESs, kinetic rate coeffi-
cients, and radiative characteristics (see, e.g., [9] and
references therein).

Stochastic methods can also be used to solve the
same problems. The Monte Carlo method was first
applied to molecular kinetics in [2-4] and further
developed in [5]. Gillespie [2] suggested a mechanism
of complete randomization of molecular vibrations, in
accordance with which a molecule completely forgets
its previous history, and the probability of further
events depends only on its overall molecular energy.
Gillespie [2] used two random numbers r, and r; € [0, 1]
to determine (a) the probability that the molecule that is
in state n at time ¢ will change its state during the period

T as described by the equation I;A,, (T)dt' = ln(rl)
1
and (b) the probability that this is a transfer to a new

state m determined by "7 1A; (1) < rA1) <

z;f':lA jn(¥), where A,,(7) is the probability of the

molecular transfer from state n to state m and A, (1) =
YA,,(7) is the overall probability density for the mole-
cule to react in state n. The sampling of the random
numbers r; and r, generated collisional transitions. The
exponential model of collisional transitions was used.
Gillespie considered the case of the constant probabil-
ity A,,(t) = const and the exponential dependence
A, (?) = a,exp(—kt) for a situation corresponding to the
excitation by an exponentially decaying laser pulse [2].

Anderson an co-workers reported direct Monte
Carlo modeling of chemical reactions [10, 11]. These
works were based on the Bird method, which was for-
merly applied to gas dynamic processes [12]. Accord-
ing to this method, the reaction volume is divided into
cells with a size commensurate with the mean free path
of molecular motion, and the concentration of mole-
cules is selected so that the number of molecules in a
cell is about 30. To maintain dynamic self-similarity,
the cross-section was increased in the corresponding
proportion. Then, about ~10° molecules are introduced
into the reaction volume, and their velocity components
vy = r(2kT/M)2erf(r,) are assigned using two ran-
dom numbers r| € [0, 1] and r, = £1. It is assumed that
the molecules move during time T without collisions
(which corresponds to ~0.1 of the cell size); after this
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period, the collisions between molecules are allowed to
occur in the cell between randomly selected pairs of
molecules. The number of random collisions corre-
sponds to the number of collisions in real time during
time interval 1. The velocities of the molecules change
because of collisions; if the energy of a collision is
higher than a certain threshold value E*, the reaction
may take place with a certain probability. After this
event, the molecules move during time interval T with
new velocity components. Simple bimolecular A +
B — C + D [10] and unimolecular reactions AB +
M==A + B + M [11] were considered. It was
assumed that only collisions provide the energy
required to overcome the reaction barrier: the internal
energy was not taken into account.

The treatment of the kinetic behavior of molecules
within the framework of the theory of unimolecular
reactions together with the Monte Carlo method was
described in [7, 8]. These works reported the studies of
metal clusters formation during the nucleation of super-
saturated metal vapors behind incident shock waves
and metal cluster decomposition after their secondary
heating behind the reflected shock wave (where the
clusters emit free metal atoms, electrons, and light pho-
tons). The clusters were considered as large molecules
for which all internal degrees of freedom were assumed
to be at equilibrium. It was assumed that the distribu-
tion of the clusters over the internal energy was formed
as a result of energy transfer in collisions of the clusters
with atoms of the bath-gas, as well as the emissions of
atoms, electrons, and light photons. The specific rate
coefficients k,(E;) for each of these processes were
determined. In accordance with the calculation proce-
dure, the probability of each process is proportional to
its specific rate coefficient. The probabilities of these
processes were calculated for each elementary event,
after which the resultant energy of the cluster was fixed.
Based on these data, the distribution of the cluster over
the internal energy (DCE) was determined. The appar-
ent rate coefficients for the thermal decomposition
k4(T), thermal ionization k(T), and light emission were
calculated as functions of the wavelength using the spe-
cific rate coefficients and the calculated nonequilibrium
distribution function. This approach allowed the
authors to adequately describe their experimental data.
These examples show that the Monte Carlo method is
applicable to a large number of molecular kinetic prob-
lems. In this work, the Monte Carlo method was used
to model energy transfer and reactions in the frame-
work of the statistical theory of unimolecular reactions
of polyatomic molecules (STUR). This paper considers
only energy transfer processes.

DESCRIPTION OF ENERGY TRANSFER
BY THE MONTE CARLO METHOD

The energy exchange between reacting molecules A
and inert species M is treated in the subsequent devel-
opment below using the model of activation via a colli-
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sional complex (AM) [13-18]. In accordance with this
model, the overall energy of the complex consists of
the internal energy of the molecule A and the kinetic
energy of the collision, which is statistically redistrib-
uted within the internal degrees of freedom of the
complex AM. After the decomposition of the com-
plex, this energy is redistributed between the internal
degrees of freedom of the molecules A and M and
their translational motion. The energy distribution
occurs according to the statistical weights of its modes
of motion.

To obtain the function of distribution of the internal
molecular energy, the Monte Carlo method was used.
This method imitates the random walks of molecules A
in the energy space under the action of collisions with
bath-gas molecules. The consideration is based on the
ergodic hypothesis, which postulates that a statistical
result obtained from a long monitoring of a selected
species from an ensemble of reacting molecules and
that obtained by averaging the states of a representative
sample of the ensemble at a given moment are equiva-
lent.

Let us consider a collision between a molecule A
and a bath-gas molecule M. The total internal energy of
Ais Ey=E + E,, where Ej and E g are the vibrational
and rotational energies, respectively. We assumed that
the bath gas is monatomic and the translational motion
obeys the Boltzmann distribution. The translational
motion of colliding species can be generally described
by four degrees of freedom, one of which corresponds
to the motion of the center of gravity of the colliding
species, and, therefore, its energy does not participate
in the energy exchange. In this case, the distribution
collisions over the energy is given by

f{E) = p(E)exp(-E/RT), (1

where p(E) = A E'” is the density of energy states asso-
ciated with relative motion of the colliding molecules
and A, is a normalization factor. The energy E, of a col-
lision was determined by sampling random numbers
within &; € [0, 1] from the equation

E,
[£eExaE
&=t —

2 : @)
[raEraE
0

Equation (2) was solved numerically; the appropriate
solution was presented in the polynomial form X,(§,) =
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RTZ:“:‘O a, ¢"(&,), where ¢(&,) is written as

B 0<E <026

PE) =4&, 026<E <08
In(1-&,) 08<E <1.

The polynomials were adjusted so that the relative
uncertainty of E, was less than 10, The n,,,, value in
each interval was less than 5.

The total collisional energy of the complex AM is
Eam = Ey + E,, and it consists of the kinetic energy of
the departing partners and the total energy of the mole-
cule A after collision (which in turn consists of the
vibrational and rotational components). It was assumed
that all of the rotational degrees of freedom are active
in the energy exchange process; in other words, there
are no restrictions on the energy exchange between the
rotational and other degrees of freedom; that is, the
conservation of rotational momentum is not fulfilled.
The probability of particular energy distribution is pro-
portional to the density of energy states corresponding
to this distribution. To estimate the density of vibra-
tional states, we used

p.(E) = A(E+E)" . ?3)

The density of rotational states was described by the
classical expression

p(E) = AE", 4)

where r and v are the numbers of rotational and vibra-
tional degrees of freedom, respectively; E, is the zero-
point vibrational energy; and A, and A, are normaliza-
tion factors.

The optimal calculation procedure is to find the
energy distribution among the vibrational degrees of
freedom of the molecule A and the other degrees of
freedom and then to find the distribution between the
rotational and translational degrees of freedom. The
energy distribution between various types of motion
during the decomposition of the collisional complex
can be performed in several ways. The ultimate result is
independent of the sequence of calculations. The den-
sity of energy states for the rotational-vibrational sub-
system of the energy spectrum of the collisional com-
plex is

E
pa(E) = [pUe)p(E-e)de = AL (5)
0

The energy distribution among the vibrational degrees
of freedom of the molecule A and the other degrees of
freedom after a collision reads as follows:
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El'l
I(EAM_€+EZ)V—lEr/I+1/2d8
&2 = E(:M
J' (EAM_E +EZ)V_1€r/2+1/2d€ (6)
0

By (v, r/2+312)
" By (v, r2+302)

where &, € [0, 1]is arandom number, X = E/E ,y + E,),
and By(a, b) is the incomplete B-function. The denom-
inator of (6) can be readily calculated to obtain

By (v, r/2+3/2) = &By (v, r/2+3/2) = E}.

The solution to this equation, as in the case of equation
(2), was presented in the polynomial form: X (EF) =

2:’":‘0 a, X ©"(E¥). The vibrational energy of the mol-

ecule A after a collision is equal to E,| = Exy — E,,. The

energy distribution between the rotational and transla-
tional degrees of freedom was found from

Erl

J'8r/2—-I(Eﬂ__t_:)lﬂd8

& = Q)

:mo

er/Z—I(En_e)IIZdS

(=R

This equation was solved numerically similarly to
equation (6).

By solving equations (2), (6), and (7), we obtain the
new values of the total energy of the molecule A and its
vibrational and rotational components. Using this pro-
cedure many times and fixing each time a new state of
the molecule A, we obtained the distributions for the
total, vibrational, and rotational energies. The calcula-
tion procedure consisted of two steps. First, we solved
equations (2), (6), and (7) and determined the polyno-
mial coefficients satisfying these equations. Note that
equation (2) is universal in the sense that it should be
solved only once, whereas equations (6) and (7) should
be solved for each type of molecules. Since normally
r=13, the solution to (7) is also universal. For linear
molecules (r = 2), the solution can be simplified to
E, = E,[1 - (1 -E&;)*?]. At the second step, the proce-
dure of collision sampling is performed. The generation
of N = 10° collisions takes about 1 min of computation
using a PC based on a 486 processor.

To simulate DFE at energies E > RT, a large number
of collisions should be generated (N > 10°). Since it is
impossible using even the most powerful modern com-
puters, we employed the method of gradual approach to
the high-energy range. First, a set of N tests is used to
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find a total internal molecular energy E; for which the
fraction of detected collisions is § = 10%. At the second
step, a series of N tests was prepared in which collisions
occurred at energies E > E,. The statistical weight of
each collision which occurred during the second step of
the tests is higher than that for the first step by a factor
of 1/B. If the molecule penetrated in the range of lower
energies, it was forcibly returned. For this purpose, we
preliminary determined the mean energy E, ,, in the
range E < E, corresponding to molecular transitions
into the range E > E|. The initial value of molecular
energy was set at E, ,, and the kinetic energy was sam-
pled at random in the range E, > E, ,,,, with the sam-
pling intervals of the random numbers &, and &,
adjusted so that the final total energy would be higher
than E,. If after the second step it was necessary to
move further into the range of high energies, we deter-
mined for each further step the energy range where
more than 90% of the results of the previous step is
located and then randomly generated collisions at
higher energies.

CALCULATION RESULTS

Based on the above treatment, we developed several
computer programs for solving various problems of
molecular kinetics. Let us consider several examples.
The calculations were performed for a five-atom mole-
cule A with the following parameters: v=9, r =3, and
E, = 32.5 kcal/mol (these parameters are typical of the
CH;Cl molecule).

Calculation of the equilibrium distribution function.
The solution to this problem makes it possible to test
the reliability of the method. In the absence of external
factors (e.g., chemical reactions) which may influence
the HES population, DFE calculated by the proposed
method should be at equilibrium. Equilibrium DFE
were calculated by

2JEexp(—EIRT)
»\/;C(RT)MZ
(E+E,)" ‘exp[~(E + E,)/RT]
T'(v, E/RT)RT)"™'

where I'(v, E,/RT) is the incomplete y-function. The
distribution function of the population of the total inter-
nal energy (the sum of the vibrational and rotational
energies) is given by
E
F(E) = [FA&)F (E-g)de. ©)
0

Figure 1a presents DFEs obtained using the Monte
Carlo method and in comparison with equilibrium DFE
calculated by equations (8) and (9) at T = 2000 K. In
Fig. 1b, the same DFEs are shown along with equilib-
rium DFE. As can be seen, with variations in DFEs

E(E) =

E(E) =
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Fig. 1. DFE for (1) vibrational, (2) rotational, and (3) total
energies obtained by the Monte Carlo method: (a) the abso-
lute values of DFE calculated by equations (8) and (9); (b)
DFE calculated by the Monte Carlo method.

within 4-5 orders of magnitude, the difference between
the equilibrium distribution functions calculated ana-
Jytically and by the Monte Carlo method is less than 10%.
Thus, the Monte Carlo method is reliable in the calcu-
lations of DFEs.

Parameters of energy transfer during collisions.

The mean portion energy AE transferred per collision
and root-mean-square energy portion transferred per

collision AE* are important parameters characterizing
intermolecular energy transfer. The proposed Monte-
Carlo-based approach makes it possible to calculate
these parameters as functions of the total molecular
energy. With this aim, we generated the random
sequence of collisions for the molecule in the state with
the complete energy E, as described in detail in the pre-
vious section. As a preliminary step, a random energy
distribution of the overall energy E, among the vibra-
tional and rotational degrees of freedom was generated;
in other words, the random values of Ey and E (E, +
Eo = E;) were determined. With this aim, a random
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Fig. 2. (a) Mean energy portion and (b) the root-mean-
square energy portion transferred during one collision as a
function of the total molecular energy before the collision at
a temperature of the bath-gas of 2000 K: (/) overall energy,
(2) vibrational energy, and (3) rotational energy.
The dashed line corresponds to the values calculated by
equation (11).

number &, was generated, and the following equation
was solved

E\'

I(Eo— e+E,)" "¢ 'de

E.ut = ,?0
_[(Eo—e +E,)" "¢ 'de
0

(10)

in the same manner as equation (6). For each step, the
changes in the vibrational and rotational energies
caused by collisions were calculated. Repeating this
procedure at different energies E,, the dependence of

AE and E on the total molecular energy was

obtained. As a rule, to find AE and Kl—f_i at a given
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value of E,, about ~10* collisions were randomly gen-
erated. Figure 2 shows the calculated values of AE and

AE at a bath-gas temperature of 2000 K. The activa-
tion of molecules via the formation of collisional com-
plexes was theoretically studied in [16], where expres-

sions for AE and AE® were obtained in the classical

approximation. Similar expressions with due regard to
zero-point vibrations read

AE _f-(Ey+E)IRT
RT fr+1

AE' 6
(RT)® (F+2)(f+3)

) M2_§fE_o+__Ez+f(f+1),
RT ) 3" RT

where f is the total number of internal degrees of free-

dom. In Fig. 2, the dependences of AE and AE? calcu-
lated by (11) are shown by a dashed line. The apprecia-
ble differences between the dependences calculated
analytically and by the Monte Carlo method are due to

the fact that the highest error in AE and A—E2 calcu-
lated by (11) occurs at E< E,.

Kinetics of DFE relaxation. An important applica-
tion of the Monte Carlo algorithms to studies of energy
transfer in polyatomic molecules is the modeling of the
transformation of the vibrational energy distribution
during the approach of the system to its equilibrium
state. Let us consider typical shock-tube experiments,
when the temperature of the gas mixture drastically
increases from the initial value T} to T,. To model this
situation, we distributed about 7, molecules A accord-
ing to DFE at Ty, First, a collision was generated and
new distributions of the populations over the total,
vibrational, and rotational energies were obtained.
Then this new distribution was used as the initial state,
and so on. Figure 3 shows DFE obtained by this proce-
dure at N = 103 molecules, an initial molecular temper-
ature of 300 K, and a bath-gas temperature of 2500 K.
After 15-20 collisions, DFE approaches a stationary
shape corresponding to equilibrium DFE at the bath-
gas temperature. For each intermediate state, the effec-
tive temperature T4 that yields the best approximation
for the DFE was obtained by the trial-and-error
method. This procedure was applied to DFEs for the
vibrational and rotational degrees of freedom; in all
cases, the vibrational and rotational temperatures were
found equal. Figure 4a shows the dependence of T, on
the number of collisions. This dependence is closely
approximated by the equation (see Fig. 4b)

d Teff
dt

(11)

= kV(T,- Top),
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Fig. 3. Transformations of the population distribution of the
total molecular energy under the action of collisions. The
numbers near the curves indicate the number of collisions.
Initial DFE was calculated at T = 300 K, the temperature
of the environment was 2500 K, and the total number of

molecules, 107,

where Vv is the collisional frequency and T = 1/kv is the

characteristic time of temperature relaxation (k =
0.213 collisions™).

DISCUSSION

The examples presented above illustrate the effi-
ciency of the Monte Carlo method applied to collisional
energy exchange. The first two examples were used to
test the agreement between the energy exchange
parameters calculated by Monte Carlo and accurate
analytical methods. Surprisingly, the Monte Carlo

method makes it possible to determine AE and AE” in
the quasi-classical approximation with an accuracy
higher than that obtained using analytical expressions
involving some simplifications. Analytical expressions
for vibrational and rotational states are still more diffi-
cult to obtain.

Let us consider the results on the modeling of vibra-
tional relaxation kinetics in more detail. Figure 4 shows
that the equilibrium over the vibrational degree of free-
dom is attained after a few collisions. The effective
molecular temperature attains its threshold value after
about 10 collisions. In most cases, the relaxation
requires from 10 to 1000 collisions. A significant
increase in the vibrational relaxation time may be due
to a small probability of transitions between low-lying
discrete molecular levels. However, as a rule, the tran-
sitions between low-lying levels do not limit the pro-
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Fig. 4. Effective temperature as a function of the number of
collisions; see the text for details. The conditions are the
same as for data in Fig. 3.

cess of activation at T > 1000 K. In addition, for most
cases, the assumption that a complete randomization of
the internal energy of the collisional complex occurs
during each collision is oversimplification. We are
planning to develop the proposed approach on the basis
of the model of locally statistical collisional activation
[17]. This model postulates that the statistical equilib-
rium during collisions is attainable only for certain
groups of vibrations and rotations of the collisional
complex AM with a further redistribution of energy
among the other degrees of freedom, which occurs dur-
ing the intervals between collisions.
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