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Abstract - -The Monte Carlo method was used to model the collisional energy transfer for polyatomic mole- 
cules within the framework of the statistical theory of reactions. A model describing energy transfer through 
the formation of a statistical collisional complex was suggested. It was assumed that the total energy of the com- 
plex was randomized in the course of collisions and statistically distributed among the internal and translational 
degrees of freedom. The method was verified by comparing the equilibrium distribution functions for the vibra- 
tional, rotational, and total energies of the molecule. The mean energy portion and the root-mean-square energy 
portion transferred per collision, as functions of the total molecular energy, were determined. The relaxation 
parameters of the population distribution over energy after a sharp increase in the bath-gas temperature were 
calculated. 

INTRODUCTION 

The Monte Carlo method is widely used in statisti- 
cal physics [1]. The history of its applications in chem- 
ical kinetics is much shorter (see, e.g., [2-10]). We con- 
sider only relaxation and reactions of highly excited 
states (HESs) of polyatomic molecules and emphasize 
that the main problem along this line is in solving 
microkinetic equations with the aim of calculating the 
population distribution of HESs, kinetic rate coeffi- 
cients, and radiative characteristics (see, e.g., [9] and 
references therein). 

Stochastic methods can also be used to solve the 
same problems. The Monte Carlo method was first 
applied to molecular kinetics in [2-4] and further 
developed in [5]. Giilespie [2] suggested a mechanism 
of complete randomization of molecular vibrations, in 
accordance with which a molecule completely forgets 
its previous history, and the probability of further 
events depends only on its overall molecular energy. 
Gillespie [2] used two random numbers r I and r 2 ~ [0, 1] 
to determine (a) the probability that the molecule that is 
in state n at time t will change its state during the period 

x as described by the equation ~an(z ')dz'  = l n ( 1 )  

and (b) the probability that this is a transfer to a new 
m - I  state m determined by ~j - -1  AJn(X) < r2A,,(x) < 

~ 7 =  1A/, (X), where Amn('C) is the probability of the 

molecular transfer from state n to state m and A,(x) -- 
EAm,(X) is the overall probability density for the mole- 
cule to react in state n. The sampling of the random 
numbers r3 and r4 generated collisional transitions. The 
exponential model of collisional transitions was used. 
Gillespie considered the case of the constant probabil- 
ity Am,,(x) = const and the exponential dependence 
Am,,(x) = a~exp (-kx) for a situation corresponding to the 
excitation by an exponentially decaying laser pulse [2]. 

Anderson an co-workers reported direct Monte 
Carlo modeling of chemical reactions [10, 11]. These 
works were based on the Bird method, which was for- 
merly applied to gas dynamic processes [12]. Accord- 
ing to this method, the reaction volume is divided into 
cells with a size commensurate with the mean free path 
of molecular motion, and the concentration of mole- 
cules is selected so that the number of molecules in a 
cell is about 30. To maintain dynamic self-similarity, 
the cross-section was increased in the corresponding 
proportion. Then, about -105 molecules are introduced 
into the reaction volume, and their velocity components 
Vxi - -  r2(2kT/Mi)l/2erf(rl) are assigned using two ran- 
dom numbers r 1 e [0, 1] and r2 = +1. It is assumed that 
the molecules move during time x without collisions 
(which corresponds to ~0.1 of the cell size); after this 
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period, the collisions between molecules are allowed to 
occur in the cell between randomly selected pairs of 
molecules. The number of random collisions corre- 
sponds to the number of collisions in real time during 
time interval x. The velocities of the molecules change 
because of collisions; if the energy of a collision is 
higher than a certain threshold value E*, the reaction 
may take place with a certain probability. After this 
event, the molecules move during time interval x with 
new velocity components. Simple bimolecular A + 
B - C + D [10] and unimolecular reactions AB + 
M-- - - 'A  + B + M [11] were considered. It was 
assumed that only collisions provide the energy 
required to overcome the reaction barrier: the internal 
energy was not taken into account. 

The treatment of the kinetic behavior of molecules 
within the framework of the theory of unimolecular 
reactions together with the Monte Carlo method was 
described in [7, 8]. These works reported the studies of 
metal clusters formation during the nucleation of super- 
saturated metal vapors behind incident shock waves 
and metal cluster decomposition after their secondary 
heating behind the reflected shock wave (where the 
clusters emit free metal atoms, electrons, and light pho- 
tons). The clusters were considered as large molecules 
for which all internal degrees of freedom were assumed 
to be at equilibrium. It was assumed that the distribu- 
tion of the clusters over the internal energy was formed 
as a result of energy transfer in collisions of the clusters 
with atoms of the bath-gas, as well as the emissions of 
atoms, electrons, and light photons. The specific rate 
coefficients kn(Ei) for each of these processes were 
determined. In accordance with the calculation proce- 
dure, the probability of each process is proportional to 
its specific rate coefficient. The probabilities of these 
processes were calculated for each elementary event, 
after which the resultant energy of the cluster was fixed. 
Based on these data, the distribution of the cluster over 
the internal energy (DCE) was determined. The appar- 
ent rate coefficients for the thermal decomposition 
kd(T), thermal ionization ke(T), and light emission were 
calculated as functions of the wavelength using the spe- 
cific rate coefficients and the calculated nonequilibrium 
distribution function. This approach allowed the 
authors to adequately describe their experimental data. 
These examples show that the Monte Carlo method is 
applicable to a large number of molecular kinetic prob- 
lems. In this work, the Monte Carlo method was used 
to model energy transfer and reactions in the frame- 
work of the statistical theory of unimolecular reactions 
of polyatomic molecules (STUR). This paper considers 
only energy transfer processes. 

DESCRIPTION OF ENERGY TRANSFER 
BY THE MONTE CARLO METHOD 

The energy exchange between reacting molecules A 
and inert species M is treated in the subsequent devel- 
opment below using the model of activation via a colli- 

sional complex (AM) [13-18]. In accordance with this 
model, the overall energy of the complex consists of 
the internal energy of the molecule A and the kinetic 
energy of the collision, which is statistically redistrib- 
uted within the internal degrees of freedom of the 
complex AM. After the decomposition of the com- 
plex, this energy is redistributed between the internal 
degrees of freedom of the molecules A and M and 
their translational motion. The energy distribution 
occurs according to the statistical weights of its modes 
of motion. 

To obtain the function of distribution of the internal 
molecular energy, the Monte Carlo method was used. 
This method imitates the random walks of molecules A 
in the energy space under the action of collisions with 
bath-gas molecules. The consideration is based on the 
ergodic hypothesis, which postulates that a statistical 
result obtained from a long monitoring of a selected 
species from an ensemble of reacting molecules and 
that obtained by averaging the states of a representative 
sample of the ensemble at a given moment are equiva- 
lent. 

Let us consider a collision between a molecule A 
and a bath-gas molecule M. The total internal energy of 
A is E 0 = Ev0 + E~0, where Ev0 and Er0 are the vibrational 
and rotational energies, respectively. We assumed that 
the bath gas is monatomic and the translational motion 
obeys the Boltzmann distribution. The translational 
motion of colliding species can be generally described 
by four degrees of freedom, one of which corresponds 
to the motion of the center of gravity of the colliding 
species, and, therefore, its energy does not participate 
in the energy exchange. In this case, the distribution 
collisions over the energy is given by 

f t (E)  = pt(E)exp(-EIRT), (1) 

where pt(E) = At Ell2 is the density of energy states asso- 
ciated with relative motion of the colliding molecules 
and A t is a normalization factor. The energy E t of a col- 
lision was determined by sampling random numbers 
within El ~ [0, 1 ] from the equation 

E t 

f f t( E)dE 
= o ( 2 )  

ao 

~f  t(E) dE 
o 

Equation (2) was solved numerically; the appropriate 
solution was presented in the polynomial form Xt(~l) = 
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"max R T Z .  = oa. q)n(91) , where (P(91) is written as 

[~/3 0--~1-<0.26 

(P(~l) = ~gt 0.26<9,-<0.8 

[ In(1 - 91) 0.8<~1 < 1. 

The polynomials were adjusted so that the relative 
uncertainty of Et was less than 10 -4. The nma x value in 
each interval was less than 5. 

The total collisional energy of the complex AM is 
EAM = EO + Et, and it consists of the kinetic energy of 
the departing partners and the total energy of the mole- 
cule A after collision (which in turn consists of the 
vibrational and rotational components). It was assumed 
that all of the rotational degrees of freedom are active 
in the energy exchange process; in other words, there 
are no restrictions on the energy exchange between the 
rotational and other degrees of freedom; that is, the 
conservation of rotational momentum is not fulfilled. 
The probability of particular energy distribution is pro- 
portional to the density of energy states corresponding 
to this distribution. To estimate the density of vibra- 
tional states, we used 

pv(E) = Av(E + Ez)"-l (3) 

The density of rotational states was described by the 
classical expression 

A ]si: r12 - 1 pr(E) = - r -  , (4) 

where r and v are the numbers of rotational and vibra- 
tional degrees of freedom, respectively; Ez is the zero- 
point vibrational energy; and A r and Av are normaliza- 
tion factors. 

The optimal calculation procedure is to find the 
energy distribution among the vibrational degrees of 
freedom of the molecule A and the other degrees of 
freedom and then to find the distribution between the 
rotational and translational degrees of freedom. The 
energy distribution between various types of motion 
during the decomposition of the collisional complex 
can be performed in several ways. The ultimate result is 
independent of the sequence of calculations. The den- 
sity of energy states for the rotational-vibrational sub- 
system of the energy spectrum of the collisional com- 
plex is 

E 

Prt(E) = fp r (8 )p t (E-  8)d8 = Art Er/2+ 1/2 (5) 

0 

The energy distribution among the vibrational degrees 
of freedom of the molecule A and the other degrees of 
freedom after a collision reads as follows: 

Err 

f (EAM -- e + E~)"-Itf/l + ~/2dE 

~2 -" 0 
EAM 

J' ~ . v - 1  r /2+l /2dE (EAM -- E + P-'z) E (6) 

0 

Bx,,(v, r/2 + 3/2) 

Bx~,(v ,  r/2 + 3/2)' 

where 92 ~ [0, 1] is a random number, X = E[(EAM + Ez) ,  
and Bx(a, b) is the incomplete t-function. The denom- 
inator of (6) can be readily calculated to obtain 

Bx,(V,  r/2 + 3/2) = 92BxAM(V, r12 + 3/2) = 9*. 

The solution to this equation, as in the case of equation 

(2), was presented in the polynomial form: X, (~ '  ) = 
nmax 2 n  -- 0 a, x q~'(9~' ). The vibrational energy of the mol- 

ecule A after a collision is equal to Evi =//?AM -- E,. The 
energy distribution between the rotational and transla- 
tional degrees of freedom was found from 

Erl 
f E r / 2 - 1 ( E r t  _ 8)t/2de 

93 = o 

f E r/2 - l ( Ert - l~)l/2d8 

0 

(7) 

This equation was solved numerically similarly to 
equation (6). 

By solving equations (2), (6), and (7), we obtain the 
new values of the total energy of the molecule A and its 
vibrational and rotational components. Using this pro- 
cedure many times and fixing each time a new state of 
the molecule A, we obtained the distributions for the 
total, vibrational, and rotational energies. The calcula- 
tion procedure consisted of two steps. First, we solved 
equations (2), (6), and (7) and determined the polyno- 
mial coefficients satisfying these equations. Note that 
equation (2) is universal in the sense that it should be 
solved only once, whereas equations (6) and (7) should 
be solved for each type of molecules. Since normally 
r = 3, the solution to (7) is also universal. For linear 
molecules (r = 2), the solution can be simplified to 
Erl = E,[ 1 - (1 - 93)2/3]. At the second step, the proce- 
dure of collision sampling is performed. The generation 
of N -- 105 collisions takes about 1 min of computation 
using a PC based on a 486 processor. 

To simulate DFE at energies E >> RT, a large number 
of collisions should be generated (N > 109). Since it is 
impossible using even the most powerful modem com- 
puters, we employed the method of gradual approach to 
the high-energy range. First, a set of N tests is used to 
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find a total internal molecular energy E 1 for which the 
fraction of detected collisions is 13 --- 10%. At the second 
step, a series of N tests was prepared in which collisions 
occurred at energies E > E I. The statistical weight of 
each collision which occurred during the second step of 
the tests is higher than that for the first step by a factor 
of 1/13. If the molecule penetrated in the range of lower 
energies, it was forcibly returned. For this purpose, we 
preliminary determined the mean energy El, up in the 
range E < E1 corresponding to molecular transitions 
into the range E > E I. The initial value of molecular 
energy was set at El, up, and the kinetic energy was sam- 
pled at random in the range E t > El, up, with the sam- 
pling intervals of the random numbers ~2 and ~3 
adjusted so that the final total energy would be higher 
than E l . If after the second step it was necessary to 
move further into the range of high energies, we deter- 
mined for each further step the energy range where 
more than 90% of the results of the previous step is 
located and then randomly generated collisions at 
higher energies. 

CALCULATION RESULTS 

Based on the above treatment, we developed several 
computer programs for solving various problems of 
molecular kinetics. Let us consider several examples. 
The calculations were performed for a five-atom mole- 
cule A with the following parameters: v = 9, r = 3, and 
Ez = 32.5 kcal/mol (these parameters are typical of the 
CH3CI molecule). 

Calculation of the equilibrium distribution function. 
The solution to this problem makes it possible to test 
the reliability of the method. In the absence of external 
factors (e.g., chemical reactions) which may influence 
the HES population, DFE calculated by the proposed 
method should be at equilibrium�9 Equilibrium DFE 
were calculated by 

Er(E) = 24rEexp(-EIRT) 
~/r~( RT)3:2 ' 

(8) 
(E + Ez)V-texp [- (E + Ez)/RT] 

Ev(E) = 
F(v,  Ez/RT)(RT) v-1 

where F(v, Ez/RT) is the incomplete y-function�9 The 
distribution function of the population of the total inter- 
nal energy (the sum of the vibrational and rotational 
energies) is given by 

E 

Fs(E) = ~Fr(e)F,,(E- e)de. (9) 

0 

Figure la presents DFEs obtained using the Monte 
Carlo method and in comparison with equilibrium DFE 
calculated by equations (8) and (9) at T = 2000 K. In 
Fig. lb, the same DFEs are shown along with equilib- 
rium DFE. As can be seen, with variations in DFEs 
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Fig. 1. DFE for (1) vibrational, (2) rotational, and (3) total 
energies obtained by the Monte Carlo method: (a) the abso- 
lute values of DFE calculated by equations (8) and (9); (b) 
DFE calculated by the Monte Carlo method. 

within 4-5 orders of magnitude, the difference between 
the equilibrium distribution functions calculated ana- 
lytically and by the Monte Carlo method is less than 10%. 
Thus, the Monte Carlo method is reliable in the calcu- 
lations of DFEs. 

Parameters of energy transfer during collisions. 

The mean portion energy AE transferred per collision 
and root-mean-square energy portion transferred per 

collision AE 2 are important parameters characterizing 
intermolecular energy transfer. The proposed Monte- 
Carlo-based approach makes it possible to calculate 
these parameters as functions of the total molecular 
energy. With this aim, we generated the random 
sequence of collisions for the molecule in the state with 
the complete energy E0 as described in detail in the pre- 
vious section. As a preliminary step, a random energy 
distribution of the overall energy E 0 among the vibra- 
tional and rotational degrees of freedom was generated; 
in other words, the random values of E,,0 and E,0 (Ev0 + 
E~0 = E0) were determined. With this aim, a random 
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Fig. 2. (a) Mean energy portion and (b) the root-mean- 
square energy portion transferred during one collision as a 
function of the total molecular energy before the collision at 
a temperature of the bath-gas of 2000 K: (1) overall energy, 
(2) vibrational energy, and (3) rotational energy. 
The dashed line corresponds to the values calculated by 
equation (11). 

number ~ was generated, and the following equation 
was solved 

E f  

~(E  0 -  e + Ez) v- l r12- lde 

0 (10) ~ 
4 -~ EO 

f ( E  o - 8 + Ez) v- le r/2- lde 

o 

in the same manner as equation (6). For each step, the 
changes in the vibrational and rotational energies 
caused by collisions were calculated. Repeating this 
procedure at different energies Eo, the dependence of 

A-E and AE 2 on the total molecular energy was 

obtained. As a rule, to find A-E and AE 2 at a given 

value of E o, about - 1 0  4 collisions were randomly gen- 

erated. Figure 2 shows the calculated values of AE and 

AE 2 at a bath-gas temperature of 2000 K. The activa- 
tion of molecules via the formation of collisional com- 
plexes was theoretically studied in [ 16], where expres- 

sions for A---E and AE 2 were obtained in the classical 
approximation. Similar expressions with due regard to 
zero-point vibrations read 

AE f -  (Eo + Ez)/RT 

RT f / 2  + 1 ' 

AE 2 6 
(11) 

(RT) 2 ( f + 2 ) ( f + 3 )  

x r ( E ~  E~ )], 
L\ RT J 3J  RT  + f ( y  + 1 

w h e r e f i s  the total number of internal degrees of free- 

dom. In Fig. 2, the dependences of AE and AE 2 calcu- 
lated by (11) are shown by a dashed line. The apprecia- 
ble differences between the dependences calculated 
analytically and by the Monte Carlo method are due to 

the fact that the highest error in A--E and AE 2 calcu- 
lated by (11) occurs at E < Ez. 

Kinetics o f  DFE relaxation. An important applica- 
tion of the Monte Carlo algorithms to studies of energy 
transfer in polyatomic molecules is the modeling of the 
transformation of the vibrational energy distribution 
during the approach of the system to its equilibrium 
state. Let us consider typical shock-tube experiments, 
when the temperature of the gas mixture drastically 
increases from the initial value To to To. To model this 
situation, we distributed about Tg molecules A accord- 
ing to DFE at To. First, a collision was generated and 
new distributions of the populations over the total, 
vibrational, and rotational energies were obtained. 
Then this new distribution was used as the initial state, 
and so on. Figure 3 shows DFE obtained by this proce- 
dure at N = 105 molecules, an initial molecular temper- 
ature of 300 K, and a bath-gas temperature of 2500 K. 
After 15-20 collisions, DFE approaches a stationary 
shape corresponding to equilibrium DFE at the bath- 
gas temperature. For each intermediate state, the effec- 
tive temperature Tel f that yields the best approximation 
for the DFE was obtained by the trial-and-error 
method. This procedure was applied to DFEs for the 
vibrational and rotational degrees of freedom; in all 
cases, the vibrational and rotational temperatures were 
found equal. Figure 4a shows the dependence of Tefr on 
the number of collisions. This dependence is closely 
approximated by the equation (see Fig. 4b) 

d Tef f 
dt  = kV(Tg-  Teff), 
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Fig. 3. Transformations of the population distribution of the 
total molecular energy under the action of collisions. The 
numbers near the curves indicate the number of collisions. 
Initial DFE was calculated at T= 300 K, the temperature 
of the environment was 2500 K, and the total number of 
molecules, 105 . 
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Fig. 4. Effective temperature as a function of the number of 
collisions; see the text for details. The conditions are the 
same as for data in Fig. 3. 

where v is the coUisional frequency and x = 1/kv is the 
characteristic time of temperature relaxation (k = 
0.213 collisions-I). 

DISCUSSION 

The examples presented above illustrate the effi- 
ciency of the Monte Carlo method applied to collisional 
energy exchange. The first two examples were used to 
test the agreement between the energy exchange 
parameters calculated by Monte Carlo and accurate 
analytical methods. Surprisingly, the Monte Carlo 

method makes it possible to determine A---E and AE 2 in 
the quasi-classical approximation with an accuracy 
higher than that obtained using analytical expressions 
involving some simplifications. Analytical expressions 
for vibrational and rotational states are still more diffi- 
cult to obtain. 

Let us consider the results on the modeling of vibra- 
tional relaxation kinetics in more detail. Figure 4 shows 
that the equilibrium over the vibrational degree of free- 
dom is attained after a few collisions. The effective 
molecular temperature attains its threshold value after 
about 10 collisions. In most cases, the relaxation 
requires from 10 to 1000 collisions. A significant 
increase in the vibrational relaxation time may be due 
to a small probability of transitions between low-lying 
discrete molecular levels. However, as a rule, the tran- 
sitions between low-lying levels do not limit the pro- 
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cess of activation at T > 1000 K. In addition, for most 
cases, the assumption that a complete randomization of  
the internal energy of the collisional complex occurs 
during each collision is oversimplification. We are 
planning to develop the proposed approach on the basis 
of the model of locally statistical collisional activation 
[17]. This model postulates that the statistical equilib- 
rium during collisions is attainable only for certain 
groups of vibrations and rotations of the collisional 
complex AM with a further redistribution of energy 
among the other degrees of freedom, which occurs dur- 
ing the intervals between collisions. 
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